ALL IMAGES 1,187,422
Adv. Opt. Photon. (4,534)
Applied Optics (391,430)
Biomed. Opt. Express (30,200)
J. Opt. Commun. Netw. (16,592)
JOSA (54,227)
JOSA A (81,106)
JOSA B (93,472)
Optica (8,156)
Opt. Mater. Express (21,901)
Optics Express (327,234)
Optics Letters (144,121)
OSA Continuum (6,361)
Photonics Research (8,088)
 VOLUME     ISSUE     PAGE
DATE RANGE 1,187,422
1 Phase distribution of the diffraction pattern observed at                                                                         z                           ∕                           L                           =                           2.0                                                               , caused by a finite-radius SPP with fractional topological charge                                                                         α                           =                           2.5                                                               . We can see the chain of unit strength vortices on the                                                                         +                           x                                                                axis.
2 Co-registered image of the change in blood flow image (Fig. 3A) with the projection view image of the blood vessel network obtained by the OMAG method after the injury (Fig. 4B). The color map is the same as in Fig. 3A. The grayscale of the OMAG image was inverted such that the blood vessels appear dark for better contrast.
3 (a)–(d) x–z cross sections of the beam intensity are shown as a function of focal depth, zf, for a focused Gaussian beam propagating through in silico fractal medium 2. For each panel, the result for a single simulation is displayed on top, with the corresponding averaged result over N=100 randomly generated fractal media displayed on the bottom. For visualization, all images are self-normalized to a maximum value of 1.
4 Experimental results using the proposed method: some typical 3-D geometries of the human face mask in wireframe mode.
5 Normalized net round-trip gain                                                                                                       G                                                               s                                 p                                                                                                                         as a function of pump-signal and idler-signal phase mismatches                                                                         δ                                                         ν                                                               p                                 s                                                                                    Ω                           L                                                                and                                                                         δ                                                         ν                                                               i                                 s                                                                                    Ω                           L                                                               , respectively, for                                                                         N                           =                                                                                                                              (                                                                           π                                       /                                       2                                                                        )                                                                                             2                                                                                          . GVD is neglected, so the AM and PM eigenmodes are decoupled. (a) Gain for AM eigenmodes, (b) gain for PM eigenmodes.
6 Liquid-crystal SLMs allow unprecedented control in the generation and detection of structured light fields. (a) Long exposure image of laser light diffracted from the pixelated device. (b) CCD camera image showing the various diffraction orders. Efficiencies are typically in the 60%–85% range.
7 (a) Schematic of a four-taper-segment micropillar cavity. (b) and (c) Electric field density profile of the first- and second-order modes, respectively. (d) Electric field density profile of the third-order mode of the ten-taper-segment micropillar cavity. (e) Mode diagram as a function of taper segment number.
8 Schematic setup of the thin disk laser resonator and the pump module.
9 Profile of a stable 	      				  l		  =		  +		  1			      	     vortex soliton with 	      				  b		  =		  4.4			      	    , 	      				  		    p		    i		  		  =		  0.55			      	    . Isosurface depicting the field modulus						distribution (left) at 	      				  |		  q		  |		  =		  0.07			      	    .
10 Effect of EOT on spatial information. The central figure shows the input probe beam generated with the DLP before the FWM. The top row shows the entangled images generated by the FWM process before the plasmonic structures, while the lower row shows the entangled images after transduction through the plasmonic structures.
11 Decomposition of natural images into Fourier components. (a) All images can be expressed as a sum of 2D Fourier basis functions [e.g., (b)] by taking the sum over all values in (c) the basis-scaled image.
12 GPU simulation results with the same parameters as in Fig. 4 of [9]. Thickness of the medium is 1 cm, refractive index n=1.33, wavelength of light is 633 nm. Radius, refractive index, and scattering coefficient of the spherical scatterer in the simulations in (a) and (b) are rs=0.1  μm, ns=1.59, μs=10  cm−1, and in the sphere–cylinder mixed simulations in (c) and (d), μs=5  cm−1. For the cylindrical scatterer in the simulations in (c) and (d), rc=0.75  μm, nc=1.56, μc(90°)=65  cm−1. The direction of the cylinders is along the y axis, and the standard deviation for the Gauss distribution of the direction is 5°. The birefringence value in the simulations in (b) and (d) is 1×10−5, corresponding to an extension of 5 mm. The birefringence axis is along the 45° direction on the x–y plane. The cutoff numbers of scattering steps are all set to 200. The number of simulated photons is 1.2×108 for each group. The detector area is 1  cm×1  cm, partitioned into 100×100 pixels.
current_server https://imagebank.osa.org