ALL IMAGES 998,835
Adv. Opt. Photon. (3,143)
Applied Optics (352,426)
Biomed. Opt. Express (19,725)
J. Opt. Commun. Netw. (13,383)
JOSA (54,227)
JOSA A (74,676)
JOSA B (82,504)
Optica (4,483)
Opt. Mater. Express (14,191)
Optics Express (254,396)
Optics Letters (122,405)
Photonics Research (3,276)
DATE RANGE 998,835
Click to choose OCIS CODES
1 Peppers image. (a) Original object (b) Conventional solution with minimum-error threshold (Lloyd-Max): SNR = 13.72 dB (c) Binary acquisition using our method (d) Reconstruction using our method: SNR = 19.10 dB
2 Supplementary epifluorescence collection through a ring of optical fibers. (a) Top: CAD-drawing of a custom fiber-ring holder placed under an objective. Bottom: Closeup view showing the ring-like arrangement of the fiber tips. Only five of eight fibers are shown. Fluorophores are 2-photon excited in the focus of an infrared laser beam (red), causing isotropic fluorescence emission (green). (b) Left: Top view of the ring-like arrangement of eight 1-mm diameter fibers. Right: Dual-channel detection in a custom 2PLSM setup. Optical fibers were bundled and placed in front of a second PMT.
3 Numerical simulations of amplification of white noise by FWM and SRS as a function of propagation length.
4 Sketch of a microroll that can be fabricated  by rolling up strained layers. The tube wall represents a three- dimensional metamaterial consisting of a metal–semiconductor  superlattice containing quantum wells and metal gratings.
5 Schematic diagram of single-prism pulse compressor.
6 Transmission spectra through a lattice of  periodic gold film perforated with Z-shaped slits with slit widths                                                                                                                                        w                                                                                             2                                                                                    =                           25                                                               , 50, 100,                                                                         150                                                       nm                                                               .                                                                         h                           =                           500                                                       nm                                                               ,                                                                         l                           =                           800                                                       nm                                                               ,                                                                                                                                       s                                                                                             2                                                                                    =                           450                                                       nm                                                               ,                                                                                                                                        w                                                                                             1                                                                                    =                                                                                          w                                                                                             3                                                                                    =                           150                                                       nm                                                               .
7 Profile of a stable 																								l									=									+									1																					 vortex soliton with 																								b									=									4.4																					, 																																		p										i																		=									0.55																					. Isosurface depicting the field modulus						distribution (left) at 																								|									q									|									=									0.07																					.
8 (a) Schematic of a four-taper-segment micropillar cavity. (b) and (c) Electric field density profile of the first- and second-order modes, respectively. (d) Electric field density profile of the third-order mode of the ten-taper-segment micropillar cavity. (e) Mode diagram as a function of taper segment number.
10 Transfer of angular momentum in optical tweezers. A trapped object can be rotated either by the transfer of SAM from a circularly polarized beam (left) or by the transfer of OAM from a high-order Laguerre–Gaussian beam.
11 Fundamental mode transverse electric field intensity (Et2) distributions at 1.45 μm (upper figures) and 1.75 μm (lower figures) wavelengths, for nearly zero-dispersion flattened PCFs with Λ=2.3  μm and d=0.61  μm for (a) α=0° and β=0°, (b) α=30° and β=0°, (c) α=0° and β=30°, (d) α=0° and β=0°, (e) α=30° and β=0°, and (f) α=0° and β=30°.
12 Experimental results of the signal and reference speckled beams with triangular aperture and cross-correlations between them in the first, second, and third columns, respectively.