ALL IMAGES 955,995
Adv. Opt. Photon. (2,721)
Applied Optics (343,667)
Biomed. Opt. Express (17,620)
J. Opt. Commun. Netw. (12,063)
JOSA (54,227)
JOSA A (73,067)
JOSA B (80,568)
Optica (3,581)
Opt. Mater. Express (12,576)
Optics Express (238,326)
Optics Letters (117,579)
DATE RANGE 958,346
Click to choose OCIS CODES
1 THz near-field images in the frequency domain. (a) and (b) Amplitude frequency maps at 300 GHz normalized to reference maps using 10- and 1-μm-thick 	    	      		X	      	    	  -cut LN crystals, respectively (visible image of the sample on the right hand side). (c)–(e) Expanded view for the conditions without probe filtering, with probe filtering using the 10-μm-thick sensor, and with probe filtering using the 1-μm-thick sensor, respectively (i.e., zones identified by the doted lines in the visible images).
2 Isointensity plot of an oblique spatiotemporal Bessel–Airy wave packet.
3 (a) Schematic of chalcogenide–silica all-solid bandgap fiber. Red: chalcogenide strands. (b) Scanning electron micrograph of endface of a chalcogenide–silica bandgap fiber (core diameter                                                                         7.6                                                       μm                                                               , pitch                                                                         3.8                                                       μm                                                               , hole diameter                                                                         1.45                                                       μm                                                               ) polished by focused-ion-beam milling.
4 Calculation result of prospective THz-wave intensity via BNA-DFG under the consideration of perfect phase matching and absorption effect.
5 The orthorectified aerial image and 5m DEM of Chiu-Shui River.
6 (a)–(d) Color fringe image acquired by a color CCD camera and its RGB components, (e) image results from the division operation applied to image in (b) and (d). The background is clipped to enhance the detail of the fringes, (f) binary image obtained from (d).
7 Sketch of a microroll that can be fabricated  by rolling up strained layers. The tube wall represents a three- dimensional metamaterial consisting of a metal–semiconductor  superlattice containing quantum wells and metal gratings.
8 (a)–(d) x–z cross sections of the beam intensity are shown as a function of focal depth, zf, for a focused Gaussian beam propagating through in silico fractal medium 2. For each panel, the result for a single simulation is displayed on top, with the corresponding averaged result over N=100 randomly generated fractal media displayed on the bottom. For visualization, all images are self-normalized to a maximum value of 1.
9 Second harmonic generation methods for studying chirality were developed in organic molecules before being applied to metamaterials. In (a), illustration of SHG from supramolecularly ordered chiral helicenes molecules. In (b), illustration of SHG from G-shaped nanostructures, arranged in a chiral unit cell. The incoming light is at 800 nm (near red color) and the detected signal is at 400 nm (near blue color).
10 Example of color stripe indexing based on De Bruijn sequence                                                                                           (                                 k                                 =                                 5                                 ,                                 n                                 =                                 3                                 )                                                                                  [35].
11 Comparison of quantitative phase maps with fluorescent assays during an optoinjection experiment: a) phase map and b) propidium iodide fluorescence (optoinjection assay) 5 min after irradiation ; c) phase map and d) Calcein AM fluorescence (viability assay) after 90 min incubation. Two cells were successfully optoinjected - one proved viable (solid arrow) while the other (dashed arrow) was necrotic after 90 min. Note the significant decrease in the optical thickness of the non-viable cell. Scale bars 20 μm.
12 Supplementary epifluorescence collection through a ring of optical fibers. (a) Top: CAD-drawing of a custom fiber-ring holder placed under an objective. Bottom: Closeup view showing the ring-like arrangement of the fiber tips. Only five of eight fibers are shown. Fluorophores are 2-photon excited in the focus of an infrared laser beam (red), causing isotropic fluorescence emission (green). (b) Left: Top view of the ring-like arrangement of eight 1-mm diameter fibers. Right: Dual-channel detection in a custom 2PLSM setup. Optical fibers were bundled and placed in front of a second PMT.