ALL IMAGES 1,035,587
Adv. Opt. Photon. (3,483)
Applied Optics (360,704)
Biomed. Opt. Express (21,959)
J. Opt. Commun. Netw. (14,404)
JOSA (54,227)
JOSA A (75,863)
JOSA B (84,494)
Optica (5,276)
Opt. Mater. Express (15,927)
Optics Express (268,150)
Optics Letters (127,013)
Photonics Research (4,087)
DATE RANGE 1,036,356
1 WFDI-based phase profile of a cardiomyocyte during a single beating cycle, 40 × . White horizontal scale bar represents 10 µm. Vertical color bar is in radians. Dynamics, 120 fps for 1 sec: Media 3.
2 Normalized net round-trip gain                                                                                                       G                                                               s                                 p                                                                                                                         as a function of pump-signal and idler-signal phase mismatches                                                                         δ                                                         ν                                                               p                                 s                                                                                    Ω                           L                                                                and                                                                         δ                                                         ν                                                               i                                 s                                                                                    Ω                           L                                                               , respectively, for                                                                         N                           =                                                                                                                              (                                                                           π                                       /                                       2                                                                        )                                                                                             2                                                                                          . GVD is neglected, so the AM and PM eigenmodes are decoupled. (a) Gain for AM eigenmodes, (b) gain for PM eigenmodes.
3 Numerical simulations of amplification of white noise by FWM and SRS as a function of propagation length.
4 Experimental results of the signal and reference speckled beams with triangular aperture and cross-correlations between them in the first, second, and third columns, respectively.
5 (a)–(d) Color fringe image acquired by a color CCD camera and its RGB components, (e) image results from the division operation applied to image in (b) and (d). The background is clipped to enhance the detail of the fringes, (f) binary image obtained from (d).
6 Peppers image. (a) Original object (b) Conventional solution with minimum-error threshold (Lloyd-Max): SNR = 13.72 dB (c) Binary acquisition using our method (d) Reconstruction using our method: SNR = 19.10 dB
7 Transfer of angular momentum in optical tweezers. A trapped object can be rotated either by the transfer of SAM from a circularly polarized beam (left) or by the transfer of OAM from a high-order Laguerre–Gaussian beam.
8 Example of 2D array of color-coded dots.
9 The orthorectified aerial image and 5m DEM of Chiu-Shui River.
10 (a) Schematic of a four-taper-segment micropillar cavity. (b) and (c) Electric field density profile of the first- and second-order modes, respectively. (d) Electric field density profile of the third-order mode of the ten-taper-segment micropillar cavity. (e) Mode diagram as a function of taper segment number.
11 GPU simulation results with the same parameters as in Fig. 4 of [9]. Thickness of the medium is 1 cm, refractive index n=1.33, wavelength of light is 633 nm. Radius, refractive index, and scattering coefficient of the spherical scatterer in the simulations in (a) and (b) are rs=0.1  μm, ns=1.59, μs=10  cm−1, and in the sphere–cylinder mixed simulations in (c) and (d), μs=5  cm−1. For the cylindrical scatterer in the simulations in (c) and (d), rc=0.75  μm, nc=1.56, μc(90°)=65  cm−1. The direction of the cylinders is along the y axis, and the standard deviation for the Gauss distribution of the direction is 5°. The birefringence value in the simulations in (b) and (d) is 1×10−5, corresponding to an extension of 5 mm. The birefringence axis is along the 45° direction on the x–y plane. The cutoff numbers of scattering steps are all set to 200. The number of simulated photons is 1.2×108 for each group. The detector area is 1  cm×1  cm, partitioned into 100×100 pixels.
12 Transmission spectra through a lattice of  periodic gold film perforated with Z-shaped slits with slit widths                                                                                                                                        w                                                                                             2                                                                                    =                           25                                                               , 50, 100,                                                                         150                                                       nm                                                               .                                                                         h                           =                           500                                                       nm                                                               ,                                                                         l                           =                           800                                                       nm                                                               ,                                                                                                                                       s                                                                                             2                                                                                    =                           450                                                       nm                                                               ,                                                                                                                                        w                                                                                             1                                                                                    =                                                                                          w                                                                                             3                                                                                    =                           150                                                       nm                                                               .