ALL IMAGES 951,373
Adv. Opt. Photon. (2,755)
Applied Optics (342,568)
Biomed. Opt. Express (17,406)
J. Opt. Commun. Netw. (11,926)
JOSA (54,227)
JOSA A (72,886)
JOSA B (80,274)
Optica (3,432)
Opt. Mater. Express (12,337)
Optics Express (236,528)
Optics Letters (117,034)
 VOLUME     ISSUE     PAGE
DATE RANGE 953,658
Click to choose OSA TECHNICAL DIVISIONS  
Click to choose OCIS CODES
1 WFDI-based phase profile of a cardiomyocyte during a single beating cycle, 40 × . White horizontal scale bar represents 10 µm. Vertical color bar is in radians. Dynamics, 120 fps for 1 sec: Media 3.
2 GPU simulation results with the same parameters as in Fig. 4 of [9]. Thickness of the medium is 1 cm, refractive index n=1.33, wavelength of light is 633 nm. Radius, refractive index, and scattering coefficient of the spherical scatterer in the simulations in (a) and (b) are rs=0.1  μm, ns=1.59, μs=10  cm−1, and in the sphere–cylinder mixed simulations in (c) and (d), μs=5  cm−1. For the cylindrical scatterer in the simulations in (c) and (d), rc=0.75  μm, nc=1.56, μc(90°)=65  cm−1. The direction of the cylinders is along the y axis, and the standard deviation for the Gauss distribution of the direction is 5°. The birefringence value in the simulations in (b) and (d) is 1×10−5, corresponding to an extension of 5 mm. The birefringence axis is along the 45° direction on the x–y plane. The cutoff numbers of scattering steps are all set to 200. The number of simulated photons is 1.2×108 for each group. The detector area is 1  cm×1  cm, partitioned into 100×100 pixels.
3 Fundamental mode transverse electric field intensity (Et2) distributions at 1.45 μm (upper figures) and 1.75 μm (lower figures) wavelengths, for nearly zero-dispersion flattened PCFs with Λ=2.3  μm and d=0.61  μm for (a) α=0° and β=0°, (b) α=30° and β=0°, (c) α=0° and β=30°, (d) α=0° and β=0°, (e) α=30° and β=0°, and (f) α=0° and β=30°.
4 The orthorectified aerial image and 5m DEM of Chiu-Shui River.
5 Second harmonic generation methods for studying chirality were developed in organic molecules before being applied to metamaterials. In (a), illustration of SHG from supramolecularly ordered chiral helicenes molecules. In (b), illustration of SHG from G-shaped nanostructures, arranged in a chiral unit cell. The incoming light is at 800 nm (near red color) and the detected signal is at 400 nm (near blue color).
6 Computer simulation of the light- intensity distribution of the interference pattern for hexagonal right-handed (RH) as well as left-handed (LH) photonic chiral structures using                                                                         6                           +                           1                                                                beam geometry. (a) 3D interference intensity distribution for RH structures. (c) Intensity profile in                                                                         x                           −                           z                                                                plane. (b) and (d) correspond to (a) and (c) for LH photonic chiral structures.
7 Liquid-crystal SLMs allow unprecedented control in the generation and detection of structured light fields. (a) Long exposure image of laser light diffracted from the pixelated device. (b) CCD camera image showing the various diffraction orders. Efficiencies are typically in the 60%–85% range.
8 Example of 2D array of color-coded dots.
9 A helical phase profile                                                          exp                              		                                     (                                 i                                 ℓ                                 ϕ                                 )                                                                                  converts a Gaussian laser beam into a helical mode whose wave fronts resemble an ℓ-fold corkscrew. In this case                                                          ℓ                              =                              3                                                   .
10 (a)–(d) Color fringe image acquired by a color CCD camera and its RGB components, (e) image results from the division operation applied to image in (b) and (d). The background is clipped to enhance the detail of the fringes, (f) binary image obtained from (d).
11 Numerical simulations of amplification of white noise by FWM and SRS as a function of propagation length.
12 Source images used in the experiment. Upper, L-R: cosine, cosine2, curls. Lower, L-R: eye, nose, palm. Each image was presented at a size of two degrees of visual angle square.
current_server http://imagebank.osa.org