ALL IMAGES 1,177,394
Adv. Opt. Photon. (4,474)
Applied Optics (389,256)
Biomed. Opt. Express (29,664)
J. Opt. Commun. Netw. (16,438)
JOSA (54,227)
JOSA A (80,813)
JOSA B (92,849)
Optica (7,961)
Opt. Mater. Express (21,545)
Optics Express (323,431)
Optics Letters (143,108)
OSA Continuum (5,860)
Photonics Research (7,768)
 VOLUME     ISSUE     PAGE
DATE RANGE 1,177,394
1
2 GPU simulation results with the same parameters as in Fig. 4 of [9]. Thickness of the medium is 1 cm, refractive index n=1.33, wavelength of light is 633 nm. Radius, refractive index, and scattering coefficient of the spherical scatterer in the simulations in (a) and (b) are rs=0.1  μm, ns=1.59, μs=10  cm−1, and in the sphere–cylinder mixed simulations in (c) and (d), μs=5  cm−1. For the cylindrical scatterer in the simulations in (c) and (d), rc=0.75  μm, nc=1.56, μc(90°)=65  cm−1. The direction of the cylinders is along the y axis, and the standard deviation for the Gauss distribution of the direction is 5°. The birefringence value in the simulations in (b) and (d) is 1×10−5, corresponding to an extension of 5 mm. The birefringence axis is along the 45° direction on the x–y plane. The cutoff numbers of scattering steps are all set to 200. The number of simulated photons is 1.2×108 for each group. The detector area is 1  cm×1  cm, partitioned into 100×100 pixels.
3 Schematic diagram of single-prism pulse compressor.
4 THz near-field images in the frequency domain. (a) and (b) Amplitude frequency maps at 300 GHz normalized to reference maps using 10- and 1-μm-thick 	    	      		X	      	    	  -cut LN crystals, respectively (visible image of the sample on the right hand side). (c)–(e) Expanded view for the conditions without probe filtering, with probe filtering using the 10-μm-thick sensor, and with probe filtering using the 1-μm-thick sensor, respectively (i.e., zones identified by the doted lines in the visible images).
5 Transmission spectra through a lattice of  periodic gold film perforated with Z-shaped slits with slit widths                                                                                                                                        w                                                                                             2                                                                                    =                           25                                                               , 50, 100,                                                                         150                                                       nm                                                               .                                                                         h                           =                           500                                                       nm                                                               ,                                                                         l                           =                           800                                                       nm                                                               ,                                                                                                                                       s                                                                                             2                                                                                    =                           450                                                       nm                                                               ,                                                                                                                                        w                                                                                             1                                                                                    =                                                                                          w                                                                                             3                                                                                    =                           150                                                       nm                                                               .
6
7 Sketch of a microroll that can be fabricated  by rolling up strained layers. The tube wall represents a three- dimensional metamaterial consisting of a metal–semiconductor  superlattice containing quantum wells and metal gratings.
8 Second harmonic generation methods for studying chirality were developed in organic molecules before being applied to metamaterials. In (a), illustration of SHG from supramolecularly ordered chiral helicenes molecules. In (b), illustration of SHG from G-shaped nanostructures, arranged in a chiral unit cell. The incoming light is at 800 nm (near red color) and the detected signal is at 400 nm (near blue color).
9 20 × 24 pixel scan of a life-size mannequin at 324 m distance. fSample                         = 2 GHz, 7 × 106 pulses s−1, 16 ps histogram binning size, pattern length b = 16384 bits, 2 s per-pixel dwell time. Measurement acquired using a shallow-junction SPAD. (a) Close-up photograph of the scene. (b) Segmented surface plot of the scan, including several pixels locking onto background objects.
10 Source images used in the experiment. Upper, L-R: cosine, cosine2, curls. Lower, L-R: eye, nose, palm. Each image was presented at a size of two degrees of visual angle square.
11 Effect of EOT on spatial information. The central figure shows the input probe beam generated with the DLP before the FWM. The top row shows the entangled images generated by the FWM process before the plasmonic structures, while the lower row shows the entangled images after transduction through the plasmonic structures.
12 Examples of buccal squamous epithelial cells found on prepared specimen slides. (a) Representative transmission image of two overlapping cells and (d) the corresponding spatially resolved map Σ(x, y) calculated by PWS. (b) Example of a folded isolated cell and (e) the corresponding map of Σ. (c) Isolated, non-folded cell classified as “suitable” for our study and (f) the corresponding Σ(x, y).
current_server https://imagebank.osa.org