ALL IMAGES 938,564
Adv. Opt. Photon. (2,663)
Applied Optics (339,552)
Biomed. Opt. Express (16,863)
J. Opt. Commun. Netw. (11,702)
JOSA (54,227)
JOSA A (72,360)
JOSA B (79,636)
Optica (3,144)
Opt. Mater. Express (11,523)
Optics Express (231,230)
Optics Letters (115,664)
 VOLUME     ISSUE     PAGE
DATE RANGE 940,681
Click to choose OSA TECHNICAL DIVISIONS  
Click to choose OCIS CODES
1 Computer simulation of the light- intensity distribution of the interference pattern for hexagonal right-handed (RH) as well as left-handed (LH) photonic chiral structures using                                                                         6                           +                           1                                                                beam geometry. (a) 3D interference intensity distribution for RH structures. (c) Intensity profile in                                                                         x                           −                           z                                                                plane. (b) and (d) correspond to (a) and (c) for LH photonic chiral structures.
2 Transfer of angular momentum in optical tweezers. A trapped object can be rotated either by the transfer of SAM from a circularly polarized beam (left) or by the transfer of OAM from a high-order Laguerre–Gaussian beam.
3 Normalized linear Stokes vector components demonstrate polarization synthesis.
4 GPU simulation results with the same parameters as in Fig. 4 of [9]. Thickness of the medium is 1 cm, refractive index n=1.33, wavelength of light is 633 nm. Radius, refractive index, and scattering coefficient of the spherical scatterer in the simulations in (a) and (b) are rs=0.1  μm, ns=1.59, μs=10  cm−1, and in the sphere–cylinder mixed simulations in (c) and (d), μs=5  cm−1. For the cylindrical scatterer in the simulations in (c) and (d), rc=0.75  μm, nc=1.56, μc(90°)=65  cm−1. The direction of the cylinders is along the y axis, and the standard deviation for the Gauss distribution of the direction is 5°. The birefringence value in the simulations in (b) and (d) is 1×10−5, corresponding to an extension of 5 mm. The birefringence axis is along the 45° direction on the x–y plane. The cutoff numbers of scattering steps are all set to 200. The number of simulated photons is 1.2×108 for each group. The detector area is 1  cm×1  cm, partitioned into 100×100 pixels.
5 Co-registered image of the change in blood flow image (Fig. 3A) with the projection view image of the blood vessel network obtained by the OMAG method after the injury (Fig. 4B). The color map is the same as in Fig. 3A. The grayscale of the OMAG image was inverted such that the blood vessels appear dark for better contrast.
6 Comparison of x-ray images of (a) cartilage on a chicken’s bone and (e) a tomato. The cartilage is shown clearly in (c) the differential phase image compared to (b) the absorption and (d) the scattering images. The inner structure of the tomato can be seen in (h) the scattering image, whereas (f) the absorption and (g) the differential phase images do not show any profiles.
7 (a)–(d) x–z cross sections of the beam intensity are shown as a function of focal depth, zf, for a focused Gaussian beam propagating through in silico fractal medium 2. For each panel, the result for a single simulation is displayed on top, with the corresponding averaged result over N=100 randomly generated fractal media displayed on the bottom. For visualization, all images are self-normalized to a maximum value of 1.
8 Fundamental mode transverse electric field intensity (Et2) distributions at 1.45 μm (upper figures) and 1.75 μm (lower figures) wavelengths, for nearly zero-dispersion flattened PCFs with Λ=2.3  μm and d=0.61  μm for (a) α=0° and β=0°, (b) α=30° and β=0°, (c) α=0° and β=30°, (d) α=0° and β=0°, (e) α=30° and β=0°, and (f) α=0° and β=30°.
9 Plasmon energy ω in electron volts of a composite gold NT and gold core system, for q=0 and m=2, using ωp=1.37×1016  Hz, plotted versus δ and d, when a1=7  nm.
10 Normalized net round-trip gain                                                                                                       G                                                               s                                 p                                                                                                                         as a function of pump-signal and idler-signal phase mismatches                                                                         δ                                                         ν                                                               p                                 s                                                                                    Ω                           L                                                                and                                                                         δ                                                         ν                                                               i                                 s                                                                                    Ω                           L                                                               , respectively, for                                                                         N                           =                                                                                                                              (                                                                           π                                       /                                       2                                                                        )                                                                                             2                                                                                          . GVD is neglected, so the AM and PM eigenmodes are decoupled. (a) Gain for AM eigenmodes, (b) gain for PM eigenmodes.
11 WFDI-based phase profile of a cardiomyocyte during a single beating cycle, 40 × . White horizontal scale bar represents 10 µm. Vertical color bar is in radians. Dynamics, 120 fps for 1 sec: Media 3.
12 Source images used in the experiment. Upper, L-R: cosine, cosine2, curls. Lower, L-R: eye, nose, palm. Each image was presented at a size of two degrees of visual angle square.
current_server http://imagebank.osa.org