ALL IMAGES 1,039,073
Adv. Opt. Photon. (3,483)
Applied Optics (361,549)
Biomed. Opt. Express (22,162)
J. Opt. Commun. Netw. (14,455)
JOSA (54,227)
JOSA A (75,967)
JOSA B (84,706)
Optica (5,373)
Opt. Mater. Express (16,098)
Optics Express (269,397)
Optics Letters (127,500)
Photonics Research (4,156)
DATE RANGE 1,040,053
1 Compressed spiral-scanning measurement and reconstruction of physical 3D object with spiral scanning. (Top row) Subsampled complex-valued hologram data along the spiral path. The magnitude and phase values are represented by the saturation and hue, respectively, as shown in the color wheel of the legend. Undefined hologram pixels are displayed as the gray color. The corresponding numbers of spiral revolutions p, compression ratio M/N, and the reconstruction performance score (SSIM) are shown in Table 1. (Bottom row) The reconstructed image shows the proximal layer in red (z1=870  mm) and the distal layer in blue (z2=1070  mm). Empty space is depicted as white. (Inset) The zoomed-in view of the restored 3D object. Note the high quality of letter “S” down at the 25% compression ratio.
2 Plasmon energy ω in electron volts of a composite gold NT and gold core system, for q=0 and m=2, using ωp=1.37×1016  Hz, plotted versus δ and d, when a1=7  nm.
3 Source images used in the experiment. Upper, L-R: cosine, cosine2, curls. Lower, L-R: eye, nose, palm. Each image was presented at a size of two degrees of visual angle square.
4 (a)–(d) x–z cross sections of the beam intensity are shown as a function of focal depth, zf, for a focused Gaussian beam propagating through in silico fractal medium 2. For each panel, the result for a single simulation is displayed on top, with the corresponding averaged result over N=100 randomly generated fractal media displayed on the bottom. For visualization, all images are self-normalized to a maximum value of 1.
5 (a) Schematic of a four-taper-segment micropillar cavity. (b) and (c) Electric field density profile of the first- and second-order modes, respectively. (d) Electric field density profile of the third-order mode of the ten-taper-segment micropillar cavity. (e) Mode diagram as a function of taper segment number.
6 GPU simulation results with the same parameters as in Fig. 4 of [9]. Thickness of the medium is 1 cm, refractive index n=1.33, wavelength of light is 633 nm. Radius, refractive index, and scattering coefficient of the spherical scatterer in the simulations in (a) and (b) are rs=0.1  μm, ns=1.59, μs=10  cm−1, and in the sphere–cylinder mixed simulations in (c) and (d), μs=5  cm−1. For the cylindrical scatterer in the simulations in (c) and (d), rc=0.75  μm, nc=1.56, μc(90°)=65  cm−1. The direction of the cylinders is along the y axis, and the standard deviation for the Gauss distribution of the direction is 5°. The birefringence value in the simulations in (b) and (d) is 1×10−5, corresponding to an extension of 5 mm. The birefringence axis is along the 45° direction on the x–y plane. The cutoff numbers of scattering steps are all set to 200. The number of simulated photons is 1.2×108 for each group. The detector area is 1  cm×1  cm, partitioned into 100×100 pixels.
7 (a)–(d) Color fringe image acquired by a color CCD camera and its RGB components, (e) image results from the division operation applied to image in (b) and (d). The background is clipped to enhance the detail of the fringes, (f) binary image obtained from (d).
8 THz near-field images in the frequency domain. (a) and (b) Amplitude frequency maps at 300 GHz normalized to reference maps using 10- and 1-μm-thick 	    	      		X	      	    	  -cut LN crystals, respectively (visible image of the sample on the right hand side). (c)–(e) Expanded view for the conditions without probe filtering, with probe filtering using the 10-μm-thick sensor, and with probe filtering using the 1-μm-thick sensor, respectively (i.e., zones identified by the doted lines in the visible images).
9 Example of color stripe indexing based on De Bruijn sequence                                                                                           (                                 k                                 =                                 5                                 ,                                 n                                 =                                 3                                 )                                                                                  [35].
11 Decomposition of natural images into Fourier components. (a) All images can be expressed as a sum of 2D Fourier basis functions [e.g., (b)] by taking the sum over all values in (c) the basis-scaled image.
12 Computer simulation of the light- intensity distribution of the interference pattern for hexagonal right-handed (RH) as well as left-handed (LH) photonic chiral structures using                                                                         6                           +                           1                                                                beam geometry. (a) 3D interference intensity distribution for RH structures. (c) Intensity profile in                                                                         x                           −                           z                                                                plane. (b) and (d) correspond to (a) and (c) for LH photonic chiral structures.