ALL IMAGES 942,046
Adv. Opt. Photon. (2,685)
Applied Optics (340,536)
Biomed. Opt. Express (17,008)
J. Opt. Commun. Netw. (11,764)
JOSA (54,227)
JOSA A (72,516)
JOSA B (79,804)
Optica (3,195)
Opt. Mater. Express (11,737)
Optics Express (232,599)
Optics Letters (115,975)
DATE RANGE 944,185
Click to choose OCIS CODES
1 Normalized linear Stokes vector components demonstrate polarization synthesis.
2 Peppers image. (a) Original object (b) Conventional solution with minimum-error threshold (Lloyd-Max): SNR = 13.72 dB (c) Binary acquisition using our method (d) Reconstruction using our method: SNR = 19.10 dB
3 WFDI-based phase profile of a cardiomyocyte during a single beating cycle, 40 × . White horizontal scale bar represents 10 µm. Vertical color bar is in radians. Dynamics, 120 fps for 1 sec: Media 3.
4 Comparison of x-ray images of (a) cartilage on a chicken’s bone and (e) a tomato. The cartilage is shown clearly in (c) the differential phase image compared to (b) the absorption and (d) the scattering images. The inner structure of the tomato can be seen in (h) the scattering image, whereas (f) the absorption and (g) the differential phase images do not show any profiles.
5 (a)–(d) Color fringe image acquired by a color CCD camera and its RGB components, (e) image results from the division operation applied to image in (b) and (d). The background is clipped to enhance the detail of the fringes, (f) binary image obtained from (d).
6 Liquid-crystal SLMs allow unprecedented control in the generation and detection of structured light fields. (a) Long exposure image of laser light diffracted from the pixelated device. (b) CCD camera image showing the various diffraction orders. Efficiencies are typically in the 60%–85% range.
7 Source images used in the experiment. Upper, L-R: cosine, cosine2, curls. Lower, L-R: eye, nose, palm. Each image was presented at a size of two degrees of visual angle square.
8 Photograph of two large-area 1780 lines/mm diffraction gratings (	      				  420		    		  mm		  ×		  450		    		  mm			      	    ) used at high incidence in a pulse compressor for the high-energy PETAL laser [79]. The diffraction gratings are made of dielectrics; see Section 6.1b.
9 Supplementary epifluorescence collection through a ring of optical fibers. (a) Top: CAD-drawing of a custom fiber-ring holder placed under an objective. Bottom: Closeup view showing the ring-like arrangement of the fiber tips. Only five of eight fibers are shown. Fluorophores are 2-photon excited in the focus of an infrared laser beam (red), causing isotropic fluorescence emission (green). (b) Left: Top view of the ring-like arrangement of eight 1-mm diameter fibers. Right: Dual-channel detection in a custom 2PLSM setup. Optical fibers were bundled and placed in front of a second PMT.
10 Fundamental mode transverse electric field intensity (Et2) distributions at 1.45 μm (upper figures) and 1.75 μm (lower figures) wavelengths, for nearly zero-dispersion flattened PCFs with Λ=2.3  μm and d=0.61  μm for (a) α=0° and β=0°, (b) α=30° and β=0°, (c) α=0° and β=30°, (d) α=0° and β=0°, (e) α=30° and β=0°, and (f) α=0° and β=30°.
11 Transfer of angular momentum in optical tweezers. A trapped object can be rotated either by the transfer of SAM from a circularly polarized beam (left) or by the transfer of OAM from a high-order Laguerre–Gaussian beam.
12 Sketch of a microroll that can be fabricated  by rolling up strained layers. The tube wall represents a three- dimensional metamaterial consisting of a metal–semiconductor  superlattice containing quantum wells and metal gratings.