ALL IMAGES 998,835
Adv. Opt. Photon. (3,143)
Applied Optics (352,426)
Biomed. Opt. Express (19,725)
J. Opt. Commun. Netw. (13,383)
JOSA (54,227)
JOSA A (74,676)
JOSA B (82,504)
Optica (4,483)
Opt. Mater. Express (14,191)
Optics Express (254,396)
Optics Letters (122,405)
Photonics Research (3,276)
 VOLUME     ISSUE     PAGE
DATE RANGE 998,835
Click to choose OSA TECHNICAL DIVISIONS  
Click to choose OCIS CODES
1 Peppers image. (a) Original object (b) Conventional solution with minimum-error threshold (Lloyd-Max): SNR = 13.72 dB (c) Binary acquisition using our method (d) Reconstruction using our method: SNR = 19.10 dB
2 Supplementary epifluorescence collection through a ring of optical fibers. (a) Top: CAD-drawing of a custom fiber-ring holder placed under an objective. Bottom: Closeup view showing the ring-like arrangement of the fiber tips. Only five of eight fibers are shown. Fluorophores are 2-photon excited in the focus of an infrared laser beam (red), causing isotropic fluorescence emission (green). (b) Left: Top view of the ring-like arrangement of eight 1-mm diameter fibers. Right: Dual-channel detection in a custom 2PLSM setup. Optical fibers were bundled and placed in front of a second PMT.
3 Numerical simulations of amplification of white noise by FWM and SRS as a function of propagation length.
4 Sketch of a microroll that can be fabricated  by rolling up strained layers. The tube wall represents a three- dimensional metamaterial consisting of a metal–semiconductor  superlattice containing quantum wells and metal gratings.
5 Schematic diagram of single-prism pulse compressor.
6 Transmission spectra through a lattice of  periodic gold film perforated with Z-shaped slits with slit widths                                                                                                                                        w                                                                                             2                                                                                    =                           25                                                               , 50, 100,                                                                         150                                                       nm                                                               .                                                                         h                           =                           500                                                       nm                                                               ,                                                                         l                           =                           800                                                       nm                                                               ,                                                                                                                                       s                                                                                             2                                                                                    =                           450                                                       nm                                                               ,                                                                                                                                        w                                                                                             1                                                                                    =                                                                                          w                                                                                             3                                                                                    =                           150                                                       nm                                                               .
7 Profile of a stable 																								l									=									+									1																					 vortex soliton with 																								b									=									4.4																					, 																																		p										i																		=									0.55																					. Isosurface depicting the field modulus						distribution (left) at 																								|									q									|									=									0.07																					.
8 (a) Schematic of a four-taper-segment micropillar cavity. (b) and (c) Electric field density profile of the first- and second-order modes, respectively. (d) Electric field density profile of the third-order mode of the ten-taper-segment micropillar cavity. (e) Mode diagram as a function of taper segment number.
9
10 Transfer of angular momentum in optical tweezers. A trapped object can be rotated either by the transfer of SAM from a circularly polarized beam (left) or by the transfer of OAM from a high-order Laguerre–Gaussian beam.
11 Fundamental mode transverse electric field intensity (Et2) distributions at 1.45 μm (upper figures) and 1.75 μm (lower figures) wavelengths, for nearly zero-dispersion flattened PCFs with Λ=2.3  μm and d=0.61  μm for (a) α=0° and β=0°, (b) α=30° and β=0°, (c) α=0° and β=30°, (d) α=0° and β=0°, (e) α=30° and β=0°, and (f) α=0° and β=30°.
12 Experimental results of the signal and reference speckled beams with triangular aperture and cross-correlations between them in the first, second, and third columns, respectively.
current_server http://imagebank.osa.org